39. Metal Complexes with Macrocyclic Ligands

Part XXXVIII¹)

Steric Effects in the Copper(II) and Nickel(II) Complexes with Tetra-N-alkylated 1,4,8,11-Tetraazacyclotetradecanes

by Martin R. Oberholzer, Markus Neuburger, Margareta Zehnder, and Thomas A. Kaden*

Institute of Inorganic Chemistry, Spitalstr. 51, CH-4056 Basel

(16.I.95)

A series of tetra-*N*-alkylated 1,4,8,11-tetraazacyclotetradecanes have been synthesized and their complexation potential towards Ni^{2+} and Cu^{2+} studied. In the case of sterically demanding alkyl substituents, such as i-Pr, PhCH₂, or 2-MeC₆H₄CH₂, no metal complexes are formed, whereas for substituents such as Me, Et, and Pr, the metal ion is incorporated into the macrocycle. The spectroscopic properties of the Ni^{2+} and Cu^{2+} complexes in aqueous solution indicate that, depending on the sterical hindrance of the *N*-substituents, the complexes are either square planar or pentacoordinated. All these Ni^{2+} and Cu^{2+} complexes react with N_3^- to give ternary species, the stability of which have been determined by spectrophotometric titrations. The tendency to bind N_3^- decreases with increasing steric hindrance of the alkyl substituents. The X-ray studies of the Ni^{2+} complex with the macrocycle 11, substitued by two Me and two Pr groups, and that of the Cu^{2+} complex with the tetraethyl derivative 8 show that in the solid state, the metal ions exhibit square planar coordination with a small distortion towards tetrahedral geometry.

Introduction. – The stereochemistry of the metal complexes with 1,4,8,11-tetraazacyclotetradecanes has been studied in detail and reviewed in the literature [2]. Whereas the unsubstituted macrocycle 1 (cyclam) usually gives metal complexes with the *trans*-III

	H ₃ C/N/F
1 R = H 2 R = Me 3 R = Pr 4 R = $C_{12}H_{25}$ 5 R = PhCH ₂ 6 R = o -MeC ₆ H ₄ CH ₂ 7 R = i-Pr 8 R = Et	9 R' = H 10 R' = Et 11 R' = Pr

`R'

22

¹) Part XXXVII: [1].

configuration [3], which seems to be the thermodynamically most stable arrangement, tetra-*N*-alkylated compounds such as 2-5 [4-6] tend to give complexes with the *trans*-I configuration in which all alkyl groups are directed to one side of the N₄-plane (*Fig. 1*).

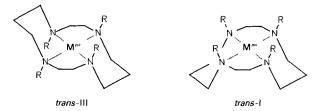


Fig. 1. The trans-111 and trans-1 configuration in 1,4,8,11-tetraazacyclotetradecane complexes as proposed by Bosnich et al. [3]

In the case of **2**, however, two forms of the Ni²⁺ complex with *trans*-I and *trans*-III configuration can be isolated [4] and their interconversion has been studied [7]. The geometry of the Ni²⁺ and Cu²⁺ complexes in the *trans*-I configuration generally is pentaor hexacoordinated, although there are indications that the Ni²⁺ complex of **2** can also be square planar in solution [8]. Because of the flexibility of such coordination geometries, it was interesting to systematically study the influence of sterical effects on the complexation properties and coordination geometries of the metal complexes with tetra-*N*-substituted 1,4,8,11-tetraazacyclotetradecanes. For this purpose, we have prepared the ligands **5–11**, in which the nature of the alkyl groups has been varied.

Experimental. – Compounds 1,4,8,11-tetraazacyclotetradecane (cyclam; 1) and 1,4-dimethyl-1,4,8,11-tetraazacyclotetradecane (9) were prepared according to [9].

1,4,8,11-Tetrabenzyl-1,4,8,11-tetraazacyclotetradecane (5). To a mixture of 1 (4.00 g, 0.02 mol) and K_2CO_3 (13.8 g, 0.1 mol) in MeCN (300 ml) at 70°, a soln. of benzyl bromide (28.80 g, 1.67 mol, 20 ml) in MeCN (80 ml) was added over 1 h. The mixture was refluxed for 12 h, cooled to r.t., and filtered. The product was then extracted from the residue with H₂O/CHCl₃. The org. phase was dried (Na₂SO₄) and evaporated and the raw product purified by chromatography (alox, CH₂Cl₂/NH₃ 19:0.15). Recrystallization from MeCN/CH₂Cl₂ yielded 5 (4.07 g, 36%). M.p. (dec.): 134–158° ([6]: 154–155°). ¹H-NMR (CDCl₃): 1.74 (quint., 4H, NCH₂CH₂CH₂N); 2.51 (t, 8H, NCH₂CH₂CH₂N); 1.60 (s, 8H, NCH₂CH₂CH₂N); 3.43 (s, 4PhCH₂); 7.22 (m, 20 arom. H). ¹³C-NMR (CDCl₃): 23.86 (NCH₂CH₂CH₂N); 50.49, 51.43, 59.43 (CH₂N); 126.60, 127.98, 128.86, 139.98 (arom. C). Anal. calc. for C₃₈H₄₈N₄ (560.79): C 81.38, H 8.63, N 9.99; found: C 81.39, H 8.70, N 10.08.

1,4,8,11-Tetrakis(2-methylbenzyl)-1,4,8,11-tetraazacyclotetradecane (6). To a mixture of 1 (4.00 g, 0.02 mol) and K₂CO₃ (13.8 g, 0.1 mol) in MeCN (130 ml) at 75°, a soln. of 2-methylbenzyl chloride (28.1 g, 0.2 mol, 25.8 ml) in MeCN (50 ml) was added over 40 min. This was kept at reflux for 46 h, then filtered. The precipitate was taken up with CH₂Cl₂/H₂O and recrystallized from MeCN/CH₂Cl₂: 9.69 g (79%). M.p. (dec.): 167–169°. IR (KBr): 3030–3080 (arom. C–H), 2600–3000 (=CH₂, CH₃), 1650–2000 (comb.), 1575–1625 (arom. C–C). ¹H-NMR (CDCl₃): 1.72 (quint., 4H, NCH₂CH₂CH₂N); 2.28 (s, 4 Me); 2.47 (t, 8H, NCH₂CH₂CH₂N); 2.59 (s, 8H, NCH₂CH₂CH₂N); 3.37 (s, 4MeC₆H₄CH₂); 6.63 (m, 16 arom. H). ¹³C-NMR (CDCl₃): 19.48 (Me), 23.77 (NCH₂CH₂CH₂N); 50.76, 51.76, 58.04 (CH₂N); 125.56, 126,79, 129,82, 130,22, 137,29, 137,97 (arom. C). Anal. calc. for C₄₂H₅₆N₄ (616.93): C 81.77, H 9.15, N 9.08; found: C 81.74, H 9.13, N 9.10.

1,4,8,11-Tetraisopropyl-1,4,8,11-tetraazacyclotetradecane Tetrakis(hydrobromide) Monohydrate (7.4 HBr \cdot H₂O). To a soln. of 1 (0.40 g, 2.0 mmol), NaI (0.06 g, 0.4 mmol), and K₂CO₃ (1.38 g, 0.01 mol) in MeCN (34 ml), 2-bromopropane (7.6 ml, 0.081 mol) was added. The mixture was refluxed for 25 h, filtered at 40°, and evaporated. The raw product was purified by flash chromatography (FC; silica gel (*Merck*) 0.040–0.063 mm, MeOH/CH₂Cl₂/NH₃ 2:6:0.3). From the pure product fractions, the free base was obtained as a colorless oil. After dissolving it in H₂O (20 ml) and 47% HBr soln. (3 ml), the precipitation of 7.4 HBr \cdot H₂O was initiated by addition of EtOH (230

ml). After filtration, the product was dried for 24 h at 75° under high vacuum: 1.0 g (80%). ¹H-NMR (CDCl₃, free base): 0.99 (*d*, 4*Me*₂CH); 1.64 (*quint.*, 4H, NCH₂CH₂CH₂N); 2.46 (*t*, 8H, NCH₂CH₂CH₂N); 2.50 (*s*, 8H, NCH₂CH₂N); 2.85 (*sept.*, 4Me₂CH). ¹³C-NMR (CDCl₃, free base): 19.02 (*Me*₂CH); 27.35 (NCH₂CH₂CH₂N); 49.30, 50.53, 52.70 (CHN, CH₂N). Anal. calc. for C₂₂H₄₈N₄·4HBr·H₂O (710.30): C 37.54, H 7.47, Br 44.83, N 7.94; found: C 37.20, H 7.66, Br 45.00, N 7.89.

1,4,8,11-Tetraethyl-1,4,8,11-tetraazacyclotetradecane Tetrakis (hydrobromide) (8·4HBr). To a soln. of 1 (4.00 g, 0.02 mol), NaI (0.06 g, 4 mmol), and (i-Pr)₂NH (70 ml, 0.4 mol) in THF (50 ml), ethyl bromide (30 ml, 0.40 mol) was added. The mixture was stirred first at r.t. for 3.5 h, then heated to 60° for 5 h. After cooling to r.t., it was filtered and evaporated. The raw product was purified by FC (slica gel (*Merck*) 0.040–0.063 mm, MeOH/CH₂Cl₂/NH₃ 2:4:0.2) and then the free base dissolved in H₂O (30 ml) and 47% HBr soln. (10 ml). After the addition of EtOH (200 ml), 8·4HBr was obtained as a white powder (2.68 g, 21%). IR (KBr): 3441 (NH), 2600–3000 (=CH₂, -CH₃), 1631 (NH). ¹H-NMR (D₂O): 1.40 (t, 4MeCH₂); 2.19 (quint., 4H, NCH₂CH₂CH₂N); 3.42 (q, 4MeCH₂); 3.57 (t, 8H, NCH₂CH₂CH₂N); 3.82 (s, 8H, NCH₂CH₂N). ¹³C-NMR (D₂O): 12.19 (Me); 19.43 (NCH₂CH₂CH₂N); 45.21, 49.06, 54.17 (CH₂N). Anal. calc. for C₁₈H₄₄Br₄N₄ (636.18): C 33.98, H 6.97, N 8.81; found: C 33.94, H 6.92, N 8.84.

1,4-Diethyl-8,11-dimethyl-1,4,8,11-tetraazacyclotetradecane (10). To a cooled soln. (0°) of acetyl chloride (3.6 ml, 0.05 mol) in dry CH₂Cl₂ (200 ml), a soln. of 9 (2.28 g, 0.01 mol) and Et₃N (6.8 ml, 0.049 mol) in dry CH₂Cl₂ (50 ml) was added over 30 min. The mixture was stirred for 23 h at r.t. After extraction with 1M NaOH, the org. phase was dried (Na₂SO₄) and evaporated giving the raw diamide. A soln. of the raw diamide in dry THF (70 ml) was heated under N₂ to reflux (important: absolutely dry equipment). The condenser, kept at 40° with thermostated H₂O, was connected to a flask containing NaOCl (14%) to destroy the SMe₂ liberated during the reaction. BH₃ SMe₂ (20 ml, 0.2 mol) in dry THF (20 ml) was added over 15 min. To dilute the soln., additional THF (20 ml) was added. After 6.5 h at reflux and cooling to r.t., the mixture was treated with MeOH (100 ml) to destroy the sccess of BH₃. The solvent was then evaporated, and the BH₃ adduct, dried overnight under high vacuum, was hydrolized with refluxing 18% HCl soln. (200 ml) for 2.5 h. After cooling to *ca*. 10°, 6M NaOH was added to reach a pH value of 12–14. Extraction with CHCl₃ and destillation at 110–115°/10⁻³ Torr gave 2.18 g (77%) of yellowish oil. Purity (GC): 95% (5% BH₃ adduct). ¹H-NMR (CDCl₃): 1.01 (*t*. 2*Me*CH₂); 1.65 (*quint.*, 4H, NCH₂CH₂CH₂N); 2.25 (*s*, 4H, NCH₂CH₂CH₂N); 2.46 (*s*, 4H, NCH₂CH₂CH₂N); 2.50 (*q*, 2MeCH₂); 2.55 (*t*, 4H, NCH₂CH₂CH₂N); 44.00 (MeN); 48.58, 50.15, 50.69, 53.95, 54.77 (CH₂N). MS (1% in EtOH): 284 (*M*⁺).

1,4-Dimethyl-8,11-dipropyl-1,4,8,11-tetraazacyclotetradecane (11). After cooling a soln. of propionyl chloride (4.4 ml, 0.05 mol) in dry CH₂Cl₂ (200 ml) to 0°, **9** (2.28 g, 0.01 mol) and Et₃N (6.8 ml, 0.05 mol) in dry CH₂Cl₂ (50 ml) were added over 30 min. After extraction by 1M NaOH, the org. phase was dried (Na₂SO₄) and evaporated. The reduction of the raw diamide was done in analogy to **10**. Purification by destillation at 165–175°/4 · 10⁻² Torr gave **11** (2.51 g, 80%). Colorless oil. Purity (GC): 92% (8% BH₃ adduct). ¹H-NMR (CDCl₃): 0.86 (t, 2 *Me* CH₂CH₂N); 1.44 (*sext.*, 2 MeCH₂CH₂N); 1.63 (*quint.*, 4H, CH₂CH₂CH₂); 2.23 (s, 2 MeN); 2.34 (t, 4H, NCH₂CH₂); 2.45 (t, 4H, NCH₂CH₂N); 2.53 (t, 4H, NCH₂CH₂); 2.45 (s, 4H, NCH₂CH₂CH₂); 2.475 (CH₂CH₂CH₂); 44.42 (MeN); 51.56, 51.86, 54.55, 55.27, 57.67 (CH₂N). MS (1% in EtOH): 312 (M^+).

(1,4,8,11-Tetraethyl-1,4,8,11-tetraazacyclotetradecane)copper(II) Diperchlorate ([Cu(8)] (ClO₄)₂; 12). First 8·4HBr (1.72 g, 2.7 mmol) was converted by ion-exchange (*Dowex 2 × 8* column) into the free base. To the latter in H₂O (20 ml), a soln. of Cu(ClO₄)₂ · 6H₂O (1.0 g, 2.7 mmol) in H₂O (20 ml) was added. The mixture was heated to 60° for 10 h. Evaporation and recrystallization from EtOH/H₂O gave violet needles of 12 (1.35 g, 87%). Anal. calc. for C₁₈H₄₀Cl₂CuN₄O₈ (574.98): C 37.60, H 7.01, Cl 12.33, Cu 11.05, N 9.74; found: C 37.73, H 7.19, Cl 12.34, Cu 10.90, N 9.94.

(1,4,8,11-Tetraethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) Diperchlorate ([Ni(8)] (ClO₄)₂; 13). After conversion of 8·4 HBr (4.3 mmol) to the free base (see 12), the latter was dissolved in H₂O (15 ml), and a soln. of Ni(ClO₄)₂·6 H₂O (1.6 g, 4.34 mmol) in H₂O (15 ml) was added. Heating to 60° for 12 h gave a violet soln. Filtration, evaporation, and recrystallization produced violet crystals of 13 (0.52 g, 34%). Anal. calc. for C₁₈H₄₀Cl₂N₄NiO₈ (570.12): C 37.92, H 7.07, Cl 12.44, N 9.83, Ni 10.29; found: C 38.01, H 7.09, Cl 12.57, N 9.97, Ni 10.30.

(1.4-Diethyl-8,11-dimethyl-1,4,8,11-tetraazacyclotetradecane)copper(II) Diperchlorate Hemihydrate ([Cu(10)] (ClO₄)₂·0.5H₂O; 14). A soln. of 10 (0.77 g, 2.71 mmol) in H₂O (20 ml) was mixed with a soln. of Cu(ClO₄)₂·6H₂O (1.0 g, 2.7 mmol) in H₂O (20 ml; immediately violet soln.). The mixture was heated to 60° for 10 h, cooled to r.t., and evaporated. Recrystallization from EtOH/H₂O gave violet crystals of 14 (0.35 g, 24%). Anal. calc. for C₁₆H₃₆Cl₂CuN₄O₈·0.5 H₂O (555.94): C 34.56, H 6.71, Cl 12.75, Cu 11.43, N 10.07; found: C 34.57, H 6.66, Cl 12.61, Cu 11.35, N 10.07.

(1,4-Diethyl-8,11-dimethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) Diperchlorate ([Ni(10)](ClO₄)₂; 15). To a soln. of 10 (0.71 g, 2.49 mmol) in H₂O (15 ml), a soln. of Ni(ClO₄)₂: 6 H₂O (1.5 g, 4.1 mmol) in H₂O (15 ml) was added (immediately deep violet soln.). Heating to 65° for 10 h, followed by cooling to r.t. gave violet crystals of 15 (1.07 g, 79%). Anal. calc. for C₁₆H₃₆Cl₂N₄NiO₈ (542.08): C 35.45, H 6.69, Cl 13.08, N 10.34, Ni 10.83; found: C 35.58, H 6.82, Cl 12.81, N 10.36, Ni 10.70.

(1,4-Dimethyl-8,11-dipropyl-1,4,8,11-tetraazacyclotetradecane)copper(11) Diperchlorate ([Cu(11)](ClO₄)₂; 16). To a soln. of 11 (0.85 g, 2.71 mmol) in H₂O (20 ml), a soln. of Cu(ClO₄)₂·6 H₂O (1.0 g, 2.7 mmol) in H₂O (20 ml) was added. The mixture was heated to 60° for 10 h. Cooling to r.t. caused precipitation. Recrystallization from EtOH/H₂O gave violet crystals of 16 (1.02 g, 66%). Anal. calc. for C₁₈H₄₀Cl₂CuN₄O₈ (574.99): C 37.60, H 7.01, Cl 12.33, Cu 11.05, N 9.74; found: C 37.68, H 6.96, Cl 12.32, Cu 11.00, N 9.61.

(1,4-Dimethyl-8,11-dipropyl-1,4,8,11-tetraazacyclotetradecane)nickel(11) Diperchlorate ([Ni(11)](ClO₄)₂; 17). A soln. of 11 (0.79 g, 2.54 mmol) in H₂O (20 ml) and a soln. of Ni(ClO₄)₂· 6 H₂O (1.5 g, 4.1 mmol) in H₂O (20 ml) were mixed and kept for 41 h at 65°. Cooling to r.t. caused precipitation. Recrystallization from EtOH/H₂O gave mauve needles of 17 (0.64 g, 44%). Anal. calc. for C₁₈H₄₀Cl₂N₄NiO₈ (570.13): C 37.92, H 7.07, Cl 12.44, N 9.83, Ni 10.29; found: C 38.08, H 6.87, Cl 12.56, N 9.82, Ni 10.50.

X-Ray Diffraction. The crystal data and parameters of the data collection of the two complexes $[Cu(8)](ClO_4)_2$ and $[Ni(11)](ClO_4)_2$ are given in Table 1.

	[Cu(8)](ClO ₄) ₂	[Ni(11)](ClO ₄) ₂	
Formula	$C_{18}H_{40}Cl_2CuN_4O_8$	C ₁₈ H ₄₀ Cl ₂ N ₄ NiO ₈	
Molecular weight [gmol ⁻¹]	574.984	570.142	
Temp. [K]	298	298	
Crystal size [mm]	0.3 imes 0.3 imes 0.4	$0.3 \times 0.3 \times 0.3$	
Absorption coeff. [cm ⁻¹]	10.952	10.314	
Crystal system	monoclinic	orthorhombic	
Space group	$P2_1/c$ (No. 14; [12])	$Pc 2_1 n^a$)	
a [Å]	9.819 ± 0.002	9.407 ± 0.001	
b [Å]	19.378 ± 0.002	11.966 ± 0.002	
c [Å]	13.648 ± 0.003	22.427 ± 0.002	
α [deg]	90	90	
β [deg]	90.325 ± 0.018	90	
γ [deg]	90	90	
$Z; V[Å^3]$	$4;2597.18\pm0.88$	$4;2524.57\pm0.57$	
Calc. density [gcm ⁻³]	1.470	1.500	
$\Theta_{\rm max}$ [deg]	28	30.44	
Radiation	MoK _a , 0.71069 Å	MoK _a , 0.71069 Å	
Scan type	$\omega/2\tilde{\Theta}$	$\omega/2\Theta$	
F(000)	1212	1208	
No. of indep. refl.	6236	3985	
No. of refl. in refin.	4578	2905	
No. of variables	298	298	
Last max./min.	+1.01/-0.55	+0.49/-0.49	
Final R	5.87	3.96	
Final R _w	7.02	4.54	
Weighting scheme	weight $\left[1-(\Delta(F)/6\sigma F)^2\right]^2$	weight $\left[1-(\Delta(F)/6\sigma F)^2\right]^2$	

Table 1. Crystal Data and Parameters of Data Collection for $[Cu(8)](ClO_4)_2$ and $[Ni(11)](ClO_4)_2$

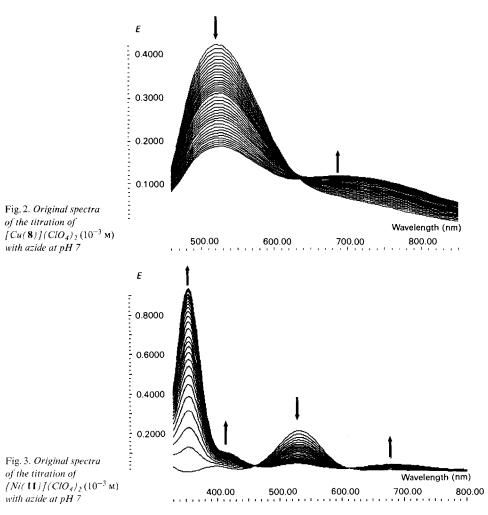
Unit cell parameters were determined by accurate centering of 25 independent strong reflections by the least-squares method. The raw data set was corrected for polarization effects and X-ray diffraction absorption. The structures were solved by the *Patterson* technique using the program SHELX-86 [10]. Anisotropic least-square refinements were carried out on all non-H-atoms using the program CRYSTALS [11]. H-Atoms are in calculated

positions with C-H distance of 1.0 Å and fixed isotropic thermal parameters. Scattering factors are taken from International Tables for Crystallography, Vol. IV [12].

Spectrophotometric Titrations. The titrations of the complexes $[ML]^{2+}$ ($M = Cu^{2+}$ and Ni^{2+} ; L = 8, 10, and 11) with N_3^- were run at $25 \pm 0.1^\circ$ and I = 1.0 M (KNO₃), on the automatic computer-controlled titrator, consisting of an UV/VIS spectrophotometer (*Pye Unicam PU 8800, Philips*), a pH meter (*Metrohm 605*), a dosimat (*Metrohm 665*), and a thermostated water bath (*Haake D8*) [13]. The computer (*IBM-AT-286*) ran the titration by adding small amounts of the titrant ([NaN₃] = 1M), waiting for equilibration, and measuring the spectra from 850 to 420 nm for [CuL]²⁺, and from 800 to 330 nm for [NiL]²⁺. To stabilize the pH at 7.0, $10^{-2} M$ 2,6-dimethylpyridine (pK_a 6.64) was used as a buffer. The complex concentration at the beginning of the titration was $10^{-3} M$. The data were evaluated with the program SPECFIT [14].

Results and Discussion. – The tetra-*N*-alkylated macrocycles were prepared either by alkylation (6–8) or by acylation and subsequent reduction of the amide (10, 11) starting from the cyclic amines. Alkylation worked especially well with benzyl halides, because of their high reactivity, and with alkyl halides with large steric hindrance at $C(\alpha)$, since the tendency to form quaternary ammonium salts is strongly reduced. For the synthesis of 10 and 11, the two-step sequence proved, to be superior, as also observed by *Alcock et al.* [5].

When the new macrocycles were reacted with Ni²⁺ or Cu²⁺, only **8**, **10**, and **11** gave metal complexes. The ligands **5**–7 with four benzyl, four 2-methylbenzyl, or four isopropyl substituents, respectively, did not complex the two metal ions, even over a longer reaction time at 60° in different solvents (H₂O, EtOH, DMF, and DMSO). Although a strong steric hindrance for these compounds is expected, the result is somewhat surprising, since the tetra-*N*-benzyl and tetra-*N*-(2-methylbenzyl) derivatives of 1,4,7,10-tetraazacyclododecane easely complex Cu²⁺ [15]. The 12-membered ring is too small to encompass a transition-metal ion, so it has to fold in such a way that the metal ion is out of the plane of the four N-atoms, and thus the *N*-substituents are pushed away from each other. A similar folding for the 14-membered ring seems not possible.


The spectral properties of the Ni²⁺ and the Cu²⁺ complexes with the ligands **2**, **8**, **10**, and **11** and of their ternary complexes with N_3^- are given in *Table 2*. In the series of the Ni²⁺ complexes, the spectrum of $[Ni(2)]^{2+}$ is distinctly different from those of the other ones. From previous studies, it is known that $[Ni(2)]^{2+}$ in aqueous solution is present in a square planar form, which absorbs at 512 nm and in a square pyramidal form with an axial H₂O molecule exhibiting two absorptions at 394 and 650 nm [8]. The other complexes

	λ_{\max} [nm]	$\varepsilon [\mathrm{m}^{-1} \mathrm{cm}^{-1}]$		λ_{\max} [nm]	$\varepsilon [\mathrm{M}^{-1}\mathrm{cm}^{-1}]$
$[Ni(2)]^{2+a}$	394, 512, 650	95, 82, 33	$[Ni(2)(N_3)]^{+a})$	405, 668	133, 46
[Ni(8)] ²⁺	544	258	$[Ni(8)(N_3)]^+$	354, 417 ^b), 689	1217, 123 ^b), 49
[Ni(10)] ²⁺	530	186	$[Ni(10)(N_3)]^+$	354, 416 ^b), 680	1314, 125 ^b), 45
[Ni(11)] ²⁺	531	216	[Ni(11)(N ₃)] ⁺	354, 415 ^b), 681	1261, 129 ^b), 52
$[Cu(2)]^{2+a}$)	640	257	$[Cu(2)(N_3)]^{+a}$	690	264
[Cu(8)] ²⁺	524	427	$[Cu(8)(N_3)]^+$	711	251
[Cu(10)] ²⁺	644	226	$[Cu(10)(N_3)]^+$	706	268
[Cu(11)] ²⁺	628	214	$[Cu(11)(N_3)]^+$	689	263

Table 2. Spectral Properties of the Ni²⁺ and Cu²⁺ Complexes with 2, 8, 10, and 11 and of Their Ternary Species with N_3^- in Aqueous Solution

exhibit only one absorption band at 530–544 nm, indicating that they are all square planar and that the steric hindrance of the *N*-substituents is so large that it prevents the axial coordination of a H₂O molecule. In the series of the Cu²⁺ complexes, the spectrum of $[Cu(8)]^{2+}$ with λ_{max} 524 nm and $\varepsilon = 427 \, \text{M}^{-1} \text{cm}^{-1}$ is unique, whereas the other complexes with λ_{max} between 628 and 644 nm have absorption characteristics typical for pentacoordinated Cu²⁺, in which four N-atoms of the macrocycle and an axial H₂O molecule are bound [16]. The low value of 524 nm for $[Cu(8)]^{2+}$ indicates that no axial H₂O molecule is coordinated in this instance, and the high value of ε suggests distortion from the square planar geometry.

To further test the effects of steric hindrance of the alkyl side chains on the reactivity of the Ni²⁺ and Cu²⁺ complexes, we studied the formation of the ternary species with N₃⁻ (*Eqn. 1*). The spectrophotometric titrations (*Figs. 2* and *3*) allowed to determine, with

$$[\mathbf{ML}]^{2+} + \mathbf{N}_{3}^{-} \rightleftharpoons [\mathbf{ML}(\mathbf{N}_{3})]^{+}; \quad K_{\text{ter}}$$

$$\tag{1}$$

the help of the program SPECFIT [14], the stability constants K_{ter} as well as the spectra of the species $[ML]^{2+}$ and $[ML(N_3)]^+$. One example of the fitting is shown in *Fig.4*. The spectra of the $[NiL(N_3)]^+$ complexes are very similar to each other, all showing d-d* transition bands at 405–417 nm and 668–689 nm which can be assigned to the transition in C_{4v} symmetry, as previously described for $[Ni(2)(N_3)]^+$ [8]. The bands at 354 nm are charge-transfer absorptions as indicated by their large ε values. The spectra of the $[CuL(N_3)]^+$ complexes can also be interpreted assuming pentacoordination of the metal ion. The shift to larger wavelengths, when N_3^- is coordinated, is a clear indication that a stronger axial ligand has been bound [16]. The stability constants K_{ter} are given in *Table 3* and show that the Ni²⁺ complexes are more stable than the analogous Cu²⁺ complexes. The effects of steric hindrance can be seen from the values of K_{ter} (*Table 3*), which decrease as the *N*-substituents become sterically more demanding. The most stable ternary species are formed by the tetramethyl derivative **2**, the less stable ones by the tetraethyl-substituted macrocycle **8**.

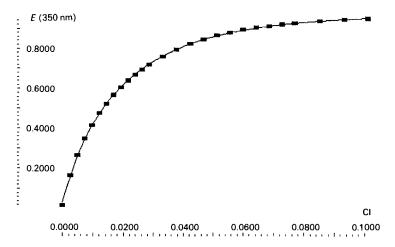


Fig. 4. Quality of the fitting for the titration of $[Ni(11)](ClO_4)_2$ with azide

Table 3. Stability Constants K_{ter} of the Ternary Complexes $[NiL(N_3)]^+$ and $[CuL(N_3)]^+$ with L = 2, 8, 10, and 11at 25° and I = Im (KNO₃)

	K _{ter}		K _{ter}
$[Ni(2)(N)_3]^{+a})$	2.250 ± 0.050	$[Cu(2)(N_3)]^{+a}$	1.290 ± 0.050
$[Ni(8)(N_3)]^+$	1.275 ± 0.009	$[Cu(8)(N_3)]^+$	0.601 ± 0.005
$[Ni(10)(N_3)]^+$	1.714 ± 0.008	$[Cu(10)(N_3)]^+$	1.098 ± 0.006
$[Ni(11)(N_3)]^+$	1.671 ± 0.007	$[Cu(11)(N_3)]^+$	1.098 ± 0.003

The X-ray structures of $[Cu(8)](ClO_4)_2$ and $[Ni(11)](ClO_4)_2$ were determined. The molecular geometries of the two complexes, together with the atomic numbering scheme are given in *Figs*. 5 and 6. The relevant bond lengths and angles are collected in *Tables 4* and 5.

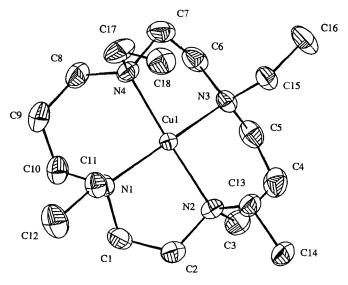


Fig. 5. X-Ray structure of [Cu(8)](ClO₄)₂

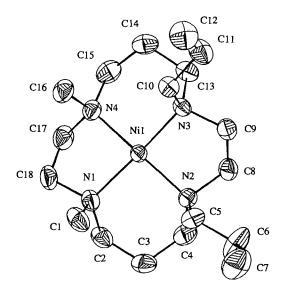


Fig. 6. X-Ray structure of [Ni(11)](ClO₄)₂

Cu(1) - N(1)	2.044(3)	N(2)-Cu(1)-N(1)	86.0(1)	N(4) - Cu(1) - N(2)	169.4(1)
Cu(1) - N(2)	2.073(3)	N(3)-Cu(1)-N(1)	165.4(1)	N(4)-Cu(1)-N(3)	87.7(1)
Cu(1) - N(3)	2.060(3)	N(3)-Cu(1)-N(2)	95.2(1)		
Cu(1) - N(4)	2.075(3)	N(4)-Cu(1)-N(1)	93.8(1)		

Table 4. Selected Bond Lengths [Å] and Angles [deg] for $[Cu(8)](ClO_4)_2$

Helvetica Chimica Acta - Vol. 78 (1995)

Ni(1)-N(1)	2.017(4)	N(2)-Ni(1)-N(1)	94.0(2)	N(4) - Ni(1) - N(2)	166.6(2)
Ni(1) - N(2)	1.973(3)	N(3) - Ni(1) - N(1)	169.5(1)	N(4) - Ni(1) - N(3)	94.7(1)
Ni(1)-N(3)	1.972(3)	N(3) - Ni(1) - N(2)	88.0(1)		
Ni(1)-N(4)	1.997(4)	N(4)-Ni(1)-N(1)	85.7(2)		

Table 5. Selected Bond Lengths [Å] and Angles [deg] for [Ni(11)](ClO₄)₂

In both cases, the metal ion is tetracoordinated in a roughly square planar geometry somewhat distorted towards a tetrahedral one. The dihedral angle between the two planes defined by N(1), N(2), M and N(3), N(4), M are 17.37 and 16.37° for the Cu²⁺ and the Ni²⁺ complex, respectively. The macrocycle is in the *trans*-I configuration, as found for several complexes with tetra-*N*-alkylated 1,4,8,11-tetraazacyclotetradecane [2]. The substituents tend to point away from the metal ion, except one of the Et groups in [Cu(8)](ClO₄)₂. This is probably due to packing effects in the crystal. The best plane through the four N-atoms show that the N-atoms are alternatively up and down by ± 0.20 and ± 0.21 Å for the Cu²⁺ and Ni²⁺ complex, respectively. In contrast, the metal ion sits very closely in this plane, being displaced by only 0.056 and 0.025 Å for Cu²⁺ and Ni²⁺, respectively, out of it in the direction of the substituents. The Cu–N bond lengths (2.04–2.07 Å) and the Ni–N bond lengths (1.97–2.02 Å) are in their normal range. For example in [Ni(1)]²⁺, they are 1.99 Å. The lengthening has been attributed to the nonbonded repulsions between the H-atoms of the MeN group [17], and this is probably also true for ligand 11.

This work was supported by the Swiss National Science Foundation (project No. 20-39270.93), and this is gratefully acknowledged.

REFERENCES

- [1] A. Urfer, Th. A. Kaden, Helv. Chim. Acta 1994, 77, 23.
- [2] J.C. Boyens, S.M. Dobson, in 'Stereochemical and Stereophysical Behaviour of Macrocycles', Ed. I. Bernal, Elsevier, Amsterdam, 1987, Vol. 2, p. 1.
- [3] For the nomenclature, see B. Bosnich, C. K. Poon, M. L. Tobe, Inorg. Chem. 1965, 4, 1002.
- [4] F. Wagner, E.K. Barefield, Inorg. Chem. 1976, 15, 408; E.K. Barefield, F. Wagner, ibid. 1973, 12, 2435; R. Buxtorf, Th. A. Kaden, Helv. Chim. Acta 1974, 57, 1035.
- [5] N. W. Alcock, A.C. Benniston, S.J. Grant, H.A.A. Omar, P. Moore, J. Chem. Soc., Chem. Commun. 1991, 1573.
- [6] T. Hiroshi, J. Chem. Soc., Chem. Commun. 1983, 970.
- [7] P. Moore, J. Sachinidis, G. R. Willey, J. Chem. Soc., Chem. Commun. 1983, 522.
- [8] M. Micheloni, P. Paoletti, S. Bürki, Th. A. Kaden, *Helv. Chim. Acta* 1982, 65, 587; S. Bürki, Th. A. Kaden, J. Chem. Soc., Dalton Trans. 1991, 805; N. Herron, P. Moore, *Inorg. Chim. Acta* 1979, 36, 89.
- [9] E. K. Barefield, F. Wagner, A. W. Herlinger, A. R. Dahl, Inorg. Synth. 1976, 16, 220.
- [10] G. M. Sheldrick, 'SHELXS 86', Universität Göttingen, 1986.
- [11] D. Watkin, 'CRYSTALS', Crystallographic Laboratory, Oxford, 1990.
- [12] 'International Tables of Crystallography', Vol. IV, Kynoch Press, Birmingham, 1974.
- [13] G. Hänisch, Th. A. Kaden, A. D. Zuberbühler, Talanta 1979, 26, 563.
- [14] H. Gampp, M. Maeder, Ch. J. Meyer, A. D. Zuberbühler, Talanta 1985, 32, 257.
- [15] U. Brunner, M. Neuburger, M. Zehnder, Th. A. Kaden, Supramol. Chem. 1993, 2, 103.
- [16] E.J. Billo, Inorg. Nucl. Chem. Lett. 1974, 10, 613; A. Kurganov, V. Davankov, ibid. 1976, 12, 73.
- [17] I.S. Crick, R.W. Gable, B.F. Hoskins, P.A. Tregloan, Inorg. Chim. Acta 1986, 111, 35.